企业等级: | 普通会员 |
经营模式: | 生产加工 |
所在地区: | 山东 潍坊 |
联系卖家: | 李海伟 先生 |
手机号码: | 15684302892 |
公司官网: | sdgxhb_vip.tz1288.co.. |
公司地址: | 山东省临朐县223省道与南环路交叉口往南2公里路西 |
(1)当导叶数减少时,随着导叶数的增加,轴流风机的性能优于风机。采用21个导叶的方案3是较佳方案,有效地提高了总压效率。同时,改造后的轴功率略有增加,方案3的功耗有所增加。
(2)当流场数据加载到固体区域表面时,叶片的应力、总变形和固有频率基本不变。离心力对叶片的强度和振动起着决定性作用,而空气动力对其影响不大。叶片的工作转速远低于一阶临界转速,不会发生共振。
(3)综合考虑方案3风机性能、轴功率、强度、振动分析结果,减少一套导叶,也可降低设计制造成本。由此可见,减径导叶方案3对实际生产和改造具有一定的参考意义。叶尖间隙对动轴流风机实际失速线的影响。
结果表明,轴流风机叶顶间隙过大,使风机实际失速线与理论失速线有较大偏差。实际失速线向下移动,同时会造成较大的负效率偏差。详细描述了试验过程,分析了操作点在性能曲线上的位置。后通过接近失速试验确定风机的实际失速线位置。通过引入相关系数,研究了叶尖间隙与失速点压力偏差、效率偏差的关系。轴流风机叶顶间隙与失速点的相对压力偏差相关系数为-0.99,即叶顶间隙越大,实际失速线与理论失速线的偏差越严重,实际失速点的负压偏差越严重。同时,叶顶间隙与效率偏差的相关系数为-0.93,即叶顶间隙越大,负效率偏差越大。
解决风机振动的策略引起风机振动的主要原因之一是叶片上有大量的灰尘,因此解决这一问题的主要措施之一是及时清除叶片上的灰尘。如果叶片上的灰尘要大规模清除,轴流风机的整个机组将需要长时间的非计划停机,并且在除尘过程中工作量很大,这不仅消耗时间和能源,而且由于工作人员的粗心大意也会造成一些设备损坏。有效的方法是在轴流风机底盘的舌部位置安装一排喷嘴,并将喷嘴调整到不同的角度,以确保喷嘴排放的灰水能够大面积除尘。这样可以减少轴流风机运行过程中叶片上的积灰,避免后续一系列工艺中的一些问题,使轴流风机运行良好。其次,锅炉引风机产生的粉尘也是造成这一问题的主要原因之一。因此,在解决这一问题的过程中,应重点对轴流风机进行改造。复合陶瓷可以粘贴在叶轮表面,因为陶瓷表面不需要热输入,陶瓷的耐磨性和耐久性明显是由其它材料造成的。总之,要真正提高电厂轴流风机的利用效率,必须对一些常见的故障进行研究和分析。根据实际情况,我们可以得到一些非常有用的解决方案。只有这样才能提高轴流风机在应用过程中的利用效率,提高电厂的运行效率,产生更大的效益,促进我国的发展。我国电力企业的快速发展。
在采集到轴流风机的振动信号中,电机的水平振动和径向振动是整个风机严重的振动。在1159.86赫兹时,振动幅度大,与两级叶轮通过频率之和一致。高频频率是由于叶片在旋转过程中周期性地通过空气中固定位置的压力波动引起的,等于叶片的旋转频率乘以叶片数。轴流风机叶片通过频率的计算公式为f=m.n/60,其中m为动叶片数,n为风机转速,风机两级叶片数为14和10,两级叶片通过频率分别为676.67hz、483.33hz,两个频率之和为1160hz。通过该频率时,叶片的振动加速度为2.0g,说明叶片与风机外壳的动、静干扰对气流波动影响较大。
从轴向不同位置的振动来看,轴流风机进出口振动小。入口主振频率分别为47.27Hz和96.18Hz,分别为风机的基频和双频。入口流速为层流状态,振动为机械振动。出口处主要振动频率为189.91赫兹、1159.86赫兹、1351.40赫兹和2313.19赫兹,主要为风机基频的四倍和气流脉动引起的高频振动。入口的振动略强于出口的振动。级叶轮旋转加速后,轴流风机内部流场变得更加复杂,而第二级叶轮反向加速时,叶片迎角较大,气动力影响较大,通过第二级叶轮等流量后流场趋于稳定。一级叶轮的振动与电机的振动相似,主要是由复杂流场的气动力和风机基频的四、五倍频率振动引起的。二级叶轮高频宽带振动的振幅远大于风机基频机械振动的振幅。